• 0 Posts
  • 23 Comments
Joined 1 year ago
cake
Cake day: July 3rd, 2023

help-circle
  • TheDevil@lemmy.world
    cake
    toTechnology@lemmy.mlHow to use IRC at school?
    link
    fedilink
    English
    arrow-up
    10
    ·
    8 months ago

    A long time ago I used something like sockd to run a local proxy and then send that data to my personal remote proxy server over port 80, something like https://win2socks.com/ I think

    Maybe there’s something better than socks these days.

    Back then it worked pretty well, but I don’t think they were doing DPI. They (admin guys) did seem to notice large file transfers and seemed to be killing them manually.

    I would assume most places these days will collect net flow data at least, so while https will protect the contents, they will be able to see the potentially unusual amount of data moving back and forth to your proxies IP.

    I would suggest at least using a VPS to hide your schools IP address from the irc servers. And you may be in serious trouble if you get caught. If you’re in the UK you’re going to be risking jail time, and speaking from personal experience, they take this shit seriously.

    So maybe just set up a personal hotspot.




  • My concern is with malware that exploits the software stack though, and those links pertain to scams that exploit human nature. Hence they don’t really support the argument that the iOS/android stack is more/less secure.

    Scams that exploit human nature are an inevitable part of being online and there is no foolproof way to prevent them. I never said that either company was better or worse at reactive removal.

    Scam apps require user interaction to achieve their goals. They largely aren’t doing anything that the user doesn’t allow them to do. So while I would always advocate swift removal, the onus is on me to protect myself rather than the store itself.

    The links I posted related to software on the play store exploiting aspects of the Android stack to surreptitiously perform tasks without the users knowledge. If somebody downloads one of those apps they are able to do things that the user isn’t aware of and never allows. This is the kind of exploitation that is preventable by thorough fuzzing. And this is the kind of threat that iOS does a fantastic job at protecting against.

    Put it this way: I can safely download any app from the Apple App Store knowing that it is highly unlikely it will fuck with my device. I know that if it does it’ll probably be noteworthy enough to make the news. I can’t say the same for the Google Play Store.



  • No I did not and the Swift was (at the time) an official lineage target. It performed well, but the amount of work and effort it took to attain and maintain that performance was simply unacceptable to me. I like the concept of Android and I like how open it is but that doesn’t mean I’m going to be an apologist for it’s shortcomings. Of which there are many. I would love to be able to justify using an android device but it is just not a rational choice for me. And it would seem many others.

    Denigrating something is by definition unfair criticism - and I don’t think even the most evangelical of android fans can support the mediocre manufacturer support and security history of the platform.


  • I tried a full phone cycle on Android. A Wileyfox Swift. I stuck with it for 4 years. I’ve dealt with a handful of Android tablets. I still have to wrangle Android on fire sticks.

    I love to mess around with electronics but holyshit never again. These are devices that need to work and perform, I got so damn tired messing with Lineage and TWRP - the alternative being the zero updates from the manufacturer. The whole stack is a janky mess, and a moving target in terms of security and performance. Flagship phones that might stay current and perform well for a couple of years? Wtf?

    So many android apps are dogshit. There’s no minimum bar to entry. Malicious apps sneak onto the play store. Out of date apps linger around.

    My phone is not a project piece. It’s an essential device. Apple gives me a stringently vetted App Store, strong privacy controls, dependable hardware and performance. They expose the settings that I need and optimise everything else. My iPhone works and does it’s job with far less painful maintenance. I’m definitely willing to trade some freedom for that utility.

    Not only that but Apple hasn’t tried to drm the open web lately. Are you sure this is consumerism and peer pressure? And not a dogshit software stack with poor performance, security and hardware driving away the users who are most engaged with their devices?

    Do I care what phone you’re using? No. But I think bullshit click bait articles which effectively denigrate an entire demographic for the sake of instigating a tired back and forth about apples vs oranges should stay on the other side of the fucking paywall.


  • TheDevil@lemmy.world
    cake
    toSelfhosted@lemmy.worldRouters
    link
    fedilink
    English
    arrow-up
    1
    ·
    11 months ago

    Hasn’t been an issue for me. HA would only be depending on Opnsense for a DHCP lease so assuming you have reasonable lease times it’ll just pick up where it left off.

    Without checking I would imagine you could just set a delay for the HA container to make sure opnsense can start first, if it does become an issue.


  • TheDevil@lemmy.world
    cake
    toSelfhosted@lemmy.worldRouters
    link
    fedilink
    English
    arrow-up
    3
    ·
    11 months ago

    I use an N5105 generic mini pc running proxmox and opnsense. You can get them fairly cheaply from Aliexpress. They’re particularly low power and come with 4-6 gigabit network ports. I have two containers, the second of which hosts my Home Assistant instance. As an added bonus they often don’t have a fan.

    For wifi I use Ubiquity wifi 6 Lite APs with the controller running under home assistant.


  • You can ignore the windows machine unless it’s using nfs, it’s not relevant.

    Your screenshot suggests my guess was incorrect because you do not have any authorised Networks or Hosts defined.

    Even so if it was me I would correctly configure authorised hosts or authorised networks just to rule it out, as it neatly explains why it works on one container but not another. Does the clone have the same IP by any chance?

    The only other thing I can think for you to try is to set maproot user/group to root/wheel and see if that helps but it’s just a shot in the dark.






  • While I agree in general that turnkey solutions for access points (not routers) are largely preferable I must point out that it is at least possible to achieve 802.11ax with DD-WRT: https://openwrt.org/toh/views/toh_available_16128_ax-wifi for example, as I found out from this excellent post: https://lemmy.ninja/post/224052

    That post also does a fantastic job of explaining the inherent issues of dealing with wifi hardware from an open source perspective.

    Features like Mu-MIMO/beam forming that call for arrays of antenna are a part of the respective WiFi specifications, and are baked into the closed firmware of the radios. While manufacturers will fight hard to make you believe they are implementing something special, the fact is that they must abide by the WiFi standards and are just rebranding things built into the radios they buy. Hence even FOSS software can implement them. Check out this thread I found which describes what’s going on:

    https://forum.dd-wrt.com/phpBB2/viewtopic.php?p=1215880

    What troubles me about the ap/router combos from Asus and the like is that they they charge so much for so little, and they have a history of being generally shitty: https://www.pcworld.com/article/447083/netgear-accuses-asus-of-submitting-fraudulent-test-results-to-the-fcc.html

    https://www.ftc.gov/news-events/news/press-releases/2016/02/asus-settles-ftc-charges-insecure-home-routers-cloud-services-put-consumers-privacy-risk

    It was these same companies that claimed gigabits of wifi throughput, when they were in fact advertising the combined speed of three antennas over two bands. No one device would ever see the speed they slapped on the package. Heck even if they did, grandma probably can’t appreciate the fact that faster wifi doesn’t mean shit if you have a 20/3 asynchronous dsl connection.

    The specialised hardware - ASICS that push packets - are what allow them to include megabytes of RAM and tiny amounts of storage along with extremely anemic CPUs. Very little if any of this is designed in house, they pick components or even an entire SoC, lay out a board, test it and ship it with a nauseating markup. Those ASICS aren’t expensive: they’re in the most basic switches, and the super duper wifi hardware is just a rebadged product from another company. This isn’t really a criticism, it just means that they are efficient and low power but hardly unique. It is though an observation that even the high end router/ap combos are far from bleeding edge tech worthy of the high prices they charge, imho. Why the fuck is 10GbE still so expensive in 2023? There are 10 year old SATA3 drives that can saturate a GigE uplink.

    The software side usually consists of a minimised Linux build often running a myriad of the same open source software running on DIY builds. Back in the bad old days it even took some pressure to get them to abide by the respective OSS licenses and give their code back to the communities they were using to make money.

    They’re charging a premium for very low spec hardware, and not doing a great deal to earn their keep.

    Finally while these companies are now being forced to provide updates, they are still shipping products with security issues:

    https://www.bleepingcomputer.com/news/security/asus-urges-customers-to-patch-critical-router-vulnerabilities/

    One of the most relevant examples from that article being: ‘The other critical patch is for an almost five-year-old CVE-2018-1160 bug caused by an out-of-bounds write Netatalk weakness that can also be exploited to gain arbitrary code execution on unpatched devices.’

    So while I can agree that a DIY Wifi AP will likely cause a certain amount of avoidable grief, I simply can’t abide by the notion that OPNsense or PFsense is unable to offer feature parity with COTS routers.

    As an addendum, if my $100 x86 router can route 1GbE as well as a $300 RGB monstrosity, what are they bringing to the party exactly? Why should we indulge that? Why should we tolerate such gratuitous bullshit?


  • If your only goal is working https then as the other comment correctly suggests you can do DNS-01 authentication with Let’s Encrypt + Certbot + Some brand of dyndns

    However the other comment is incorrect in stating that you need to expose a HTTP server. This method means you don’t need to expose anything. For instance if you do it with HA:

    https://github.com/home-assistant/addons/blob/master/letsencrypt/DOCS.md

    Certbot uses the API of your DDNS provider to authenticate the cert request by adding a txt record and then pulls the cert. No proxies no exposed servers and no fuss. Point the A record at your Rfc1918 IP.

    You can then configure your DNS to keep serving cached responses. I think though that ssl will still be broken while your connection is down but you will be able to access your services.

    Edit to add: I don’t understand why so many of the HTTPS tutorials are so complicated and so focused on adding a proxy into the mix even when remote access isn’t the target.

    Cert bot is a shell script. It asks the Lets Encrypt api for a secret key. It adds the key as a txt record on a subdomain of the domain you want a certificate for. Let’s encrypt confirms the key is there and spits out a cert. You add the cert to whatever server it belongs to, or ideally Certbot does that for you. That’s it, working https. And all you have to expose is the rfc1918 address. This, to me at least, is preferable to proxies and exposed servers.





  • The short answer is no, because it’s a pain in the ass and offers little tangible benefit. But I can speculate.

    If I was going down this path I would look for an x86 box with a wifi card that is supported by OPNsense or PFsense(that’s usually going to be dependant on available *BSD available drivers). I don’t how well they would function but I would expect quirks. You could also check the compatibility lists of the open router distributions to find something that’s well supported. You can check the forums for posts from people with similar goals and check their mileage.

    You might even be able to achieve this with an ESP32.

    But what are you hoping to achieve? Do you mean open radio firmware or do you mean open drivers? Or an open OS talking to a closed radio? What’s the benefit?

    Radios in any device are discrete components running their own show.

    Open drivers should be possible. However I have a feeling that open firmware for wifi access points radio hardware is going to be extremely hard to find. The regulatory agencies really don’t want the larger public to have complete control because of the possibility of causing interference and breaking the rules(for good reason - imagine if your neighbour had bad signal so he ignorantly cranks up the power output, not realising that he can’t do the same with his client devices, rendering his change useless).

    I seem to remember a change in FCC rules some time back that seemed to disallow manufacturers obtaining certification for devices that permitted end users to modify the firmware, much to the concern of open router users at the time. The rule was aimed at radio firmware but the concern was that the distinction would be lost and the rule applied to the entire router by overzealous manufacturers who hate third party firmware at best.

    A fully open radio is basically an SDR. Can you move packets over an SDR? Hell yes, but now you’re in esoteric HAM radio territory. It’s going to be a hell of a fun project and you’re going to learn a lot, but in so far as a practical wifi ap, your results will be limited.

    I use FOSS wherever it’s practical but if you want working wifi just stick to the well tested brand names. For what it’s worth you probably won’t gain any security by going open, if there’s any weakness it’ll probably be baked in at the protocol level which open devices would need to follow anyway. At least a discrete AP can be isolated and has no reason to be given internet access.